
1

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Portable Performance-
Oriented Programming:
Vectorization Emphasis

Mark Fahey, faheymr@ornl.gov
James B. White III, trey@ornl.gov

Portable Performance-Oriented Programming 2

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Acknowledgement
 Research sponsored by the Mathematical,

Information, and Computational Sciences
Division, Office of Advanced Scientific
Computing Research, U.S. Department of
Energy, under Contract No. DE-AC05-
00OR22725 with UT-Battelle, LLC.

Portable Performance-Oriented Programming 3

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Agenda
1. Introduction
2. Programming basics
3. General optimizations
4. Advanced optimizations
5. Case studies

Portable Performance-Oriented Programming 4

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

1. Introduction
• Why did we want to do this

− Share our knowledge of porting and optimizing
− Prevent mistakes in code development and/or

maintenance
− Expose good programming techniques for any

language
• Where we are coming from

− Combined 20+ years of writing, porting, and
optimizing HPC applications on massively parallel
supercomputers

− Our definitions/viewpoints may be debatable

Portable Performance-Oriented Programming 5

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Insightful remarks?
• “The art of programming is the art of organizing

complexity, of mastering multitude and avoiding its
bastard chaos as effectively as possible.” [Dijkstra]

• “Barring some real breakthroughs in compiler
technology, the computers of the 2000's will be even
more finicky than the computers of the 1990's.” [Dowd]

• “The true problem with software is hardware. … We
have been shielded by hardware advances from
confronting our own incompetence as software
professionals and our immaturity as an engineering
profession.” [Constantine]

Portable Performance-Oriented Programming 6

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

1.1 Portability
• Porting to new platforms should only require

setting compiler, libraries, etc.
− Port should take O(minutes)

• One source
− Don’t want two or more versions of any routine
− Platform-specific “code” should only be compiler,

library settings
− Avoid high maintenance cost of moving a tuned code

from one architecture to another
• Runs correctly on all computers

Portable Performance-Oriented Programming 7

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

1.1 Portability
• Potential by-products

− Minimal, localized machine-specific code
− Minimal #ifdefs
− Code readability
− Minimal use of non-standard libraries

• Unless performance gain is huge
− Port to any machine in minutes

• With some exceptions
− Lower performance

Portable Performance-Oriented Programming 8

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

1.1 Portability
• Stroustrup said:

− “If your program is a success, it is likely to be
ported, so someone will have to find and fix
the problems related to implementation-
dependent features.”

− “Constructing programs so that improvements
can be implemented through local
modifications only is an important design
aim.”

− Yes, he is the creator of C++
− Philosophy still applies

Portable Performance-Oriented Programming 9

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

1.2 Performance
• Tuning your code to make it run fast

− Spending as much real time as you want
• Taking advantage of fastest I/O,

communication, and numerical libraries
• Willing to make changes to the code

− Tuned for memory hierarchy and processors
− Might be slower on other computers

Portable Performance-Oriented Programming 10

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

1.2 Performance
• Potential by-products

− Much machine-specific code
• Spread across code base
• Multiple overlapping source trees

− Numerous #ifdefs
− Unreadable code segments
− Use of non-standard libraries
− Ports can take days/weeks
− Upgrades to primary machine may require whole new

round of optimizations (to possibly undo previous
opts)

Portable Performance-Oriented Programming 11

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

1.2 Performance
• Alpern and Carter said:

− Performance programming
• Design, writing, and tuning of programs to keep

processing elements as busy as possible doing
useful work

• Improve performance beyond what is achieved by
programming an algorithm in most expedient
manner

− Beyond selecting algorithms with good asymptotic
complexity (not discussed today), requires acute
sensitivity to details of processor architecture and
memory hierarchy

Portable Performance-Oriented Programming 12

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

1.3 Portable performance
• Keep most machine-specific content in make.inc and

possibly one source-code file (utilities)
• Leverage significant performance optimizations
• Employ poly-algorithms

− Choose between algorithms at runtime

• Sacrifice some performance
− Leave out small improvements disruptive to source

• Don’t mess up the source code “too much”
• Use optimized vendor libraries when it makes sense
• Must be willing to spend effort on optimizations to

see what works for multiple machines

Portable Performance-Oriented Programming 13

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

1.3 Portable performance
• Intended consequences

− Still port in minutes/hours rather than
days/weeks

− Code still readable
− Pretty fast on most machines

• At least the ones where it matters most
− Performance tuning takes more work

• Must test multiple machines

Portable Performance-Oriented Programming 14

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

1.3 Portable performance
“…we can only afford to optimize (whatever that

may be) provided that the program remains
sufficiently manageable.” [Dijkstra]

Portable Performance-Oriented Programming 15

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

1.4 Maintainability
• What is maintainability? Easy to:

− Understand what the code does
− Change your mind about design decisions
− Add functionality
− Uncover and fix bugs

• Typically much more time is spent maintaining
code than writing new code
− OO isn’t a panacea
− See quotes on next slide

Portable Performance-Oriented Programming 16

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

1.4 Maintainability
• Hatton said, in one of few studies measuring effects of

OO design:
− “a valid silver bullet for software must lead to a massive

reduction in maintenance, which is by far the life cycle’s biggest
component”

− “no significant benefits accrued from the use of an OO
technique in terms of corrective-maintenance cost and the
company views the resulting C++ product as much more difficult
to correct and enhance”

• More light-heartedly, Kent Beck at OOPSLA ’05:
− "People who could not do a decent job with structured design

went to objects so no one would notice.”

Portable Performance-Oriented Programming 17

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

1.4 Maintainability
• Important issue

− Needs its own tutorial
• But today we focus on portable

performance-oriented programming

Portable Performance-Oriented Programming 18

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

1.5 Fortran
• The “F” word, or “undead language”
• Why use Fortran?

− 32% of all users of engineering and scientific workstations
worldwide write in Fortran [Willard]

− Native language of many DOE and DOD apps (new and old)
− Compiler technology is mature
− Minimizes dependencies, maximizes optimizability
− Built-in arrays and simple data structures make programs

simpler to parallelize
• Destined to be replaced by:

− Algol, PL1, Pascal, Ada, C, C++, Java, …
− Matlab, Maple, Mathematica, …
− Chapel, X10, Fortress

Portable Performance-Oriented Programming 19

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Portable Performance-Oriented
Programming

• In what follows:
− Present basic principles of code writing and

portability up front
− Then present various optimizations with

portability in mind

Portable Performance-Oriented Programming 20

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Agenda
1. Introduction
2. Programming basics
3. General optimizations
4. Advanced optimizations
5. Case studies

Portable Performance-Oriented Programming 21

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

2. Programming basics
Consider the following when developing code
1. Generic principles

− Diagnostics
• Internal timers
• Debug checks

− Consistent programming style
2. Portability techniques

− Preprocessing
− Modules
− Modularization
− Checkpoint/restart (often a must)
− Interoperability

3. Programming for the Future

Portable Performance-Oriented Programming 22

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

2.1 Generic principles
• Use diagnostics

− Verbosity
− Timers
− Checks

• Verbosity (helps in debugging)
− Might want multiple levels of verbosity
− Input flag should control this

 if (verbose_flag == 1 .and. iam == 0) then
 print *,’ time step =',time_step
 print *,'**[subA done]'
 endif

− Limit so performance is not adversely affected
• Strive for near negligible (in terms of CPU time)

amount of if tests

Portable Performance-Oriented Programming 23

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

2.1 Generic principles
• Internal timers

− Time major phases
• Print out stats every m timesteps and summary at

completion
 if (modulo(step,time_skip) == 0) then
 call write_timing('timing.out',10,mode)
 end if

• Get your own profile (at this level of granularity)
− Know costly parts of code without having to use new tools

Portable Performance-Oriented Programming 24

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

2.1 Generic principles
• Internal checks

− Functionality/correctness
• Check return arguments, lengths of arrays, etc.
• Compile in with macro (_DEBUG?)

−Will slow code down
− So best to be a compile-time option

• Example:
#ifdef _DEBUG
 if (debug_flag .EQ. 1) write(*,*) ' x= ', x
#endif

Portable Performance-Oriented Programming 25

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

2.1 Generic principles
• Internal checks

− “I spent a lot of time talking about how not to need a debugger in the first
place. If you know something that has to be true in your code, assert it.”
Kate Hedstrom, ARSC HPC Newsletter 326

− The following example is not a C++ assertion, but similar in spirit

#ifdef _DEBUG���
 if((i .lt. lbound(arrayA,dim=1)) .or. &
 (i .gt.ubound(arrayA,dim=1))) then���
 write(*,*) ”i outside range of arrayA: i=", i���
 stop
#endif���

Portable Performance-Oriented Programming 26

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

2.1 Generic principles
− Numeric checks

• Watch out for catastrophic cancellation
− When operands nearly cancel one another out

• Effects of catastrophic cancellation can easily be magnified
− sqrt(1-x): possible loss of half significant digits
− If x is nearly 1, then sqrt(1-x) should be 0

• Example (Gyro): make_omegas.f90
temp = sqrt(abs(energy*(1.0-lambda(i,k)*b0(i,k,m))))
if (abs(temp) < 1e-5) e_temp_p = 0.0

• Output norms, like MPI_reduce(sum(abs(x)))
− Helpful in debugging wrong answers
− Or check that a norm is within an expected range

• Check return values from math library calls

Portable Performance-Oriented Programming 27

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

2.1 Generic principles
• Consistent programming style

− Easy to read, easy to do search/replace
− Indenting (use spaces)
− Use descriptive variable names

(don’t get carried away though)
− Comment-based data structures

• Group variables and described them with
comments

− Similarly, a loop structure or other code
segment may be described by one comment

Portable Performance-Oriented Programming 28

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

2.2 Portability techniques
• Preprocessing

− Minimize and localize
• At odds with compile-time debugging checks

− Use meaningful names
• LINUX too general
• NEED_UNDERSCORE or ADD_ better

− “Almost every macro demonstrates a flaw in the programming
language, in the program, or in the programmer.” [Stroustrup]
• That may be, but still a necessary evil

− “If you must use macros, use ugly names with lots of capital
letters” [Stroustrup]
• Ugly meaningful
• Possibly start and end with “_”

− What about system-defined architecture-specific macros?

Portable Performance-Oriented Programming 29

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Conditional compilation
• Various controls can easily combine in

unforeseen ways
− Thus the advice to minimize and localize

• If you use #ifdef for machine dependencies
− Make sure that when no machine is specified, the

result is an error, not a default machine
− #error directive is useful for this purpose

• If you use #ifdef for optimizations
− Default should be unoptimized code rather than an

uncompilable or incorrect program
− Be sure to test the unoptimized code

Portable Performance-Oriented Programming 30

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Modules
• Benefits

− Code reusability
− Type checking

• Kinds module
− Define kinds in one place, and use throughout code
− If changed, will require whole code to be compiled, which

is what you want
− It does not change input files or MPI data types though!
− Advice: use only if you expect to need different kinds

• Cross-dependent source files - legal but not nice to
some compilers that try to do inlining
− File X contains module A and C, and A “use”s B
− File Y contains module B which “use”s C

Portable Performance-Oriented Programming 31

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Modularization
• Modularizing communication at roughly the block-synchronous level

− Your own communication library
− Some leeway for optimization since some “physics” is still included
− Aim for potential overlapping communication and computation

• Co-Array Fortran naturally gives you overlapping communication
and computation

• Similarly, modularize I/O at a block level
• Wrap low-level system utilities, keep in utilities file that is easily

modified when porting

• Note for MPI codes:
− Assume your code may be a piece of a larger code someday don’t

use MPI_COMM_WORLD
− Make your own world communicator

Ex: Duplicate MPI_COMM_WORLD to my_world

Portable Performance-Oriented Programming 32

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Utility example
• Put the following in a utilities file
• If porting issues arise, only fix one thing/file

 subroutine execute_command(cmd)

 character(*), intent(in) :: cmd

ifdef SGI || SP2 || CPQ
 call system(trim(cmd))
endif
ifdef T3E || X1
 call ishell(trim(cmd))
endif

 end subroutine execute_command

 good macros?

Does ifdef code
follow earlier advice?

Portable Performance-Oriented Programming 33

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Checkpoint/restart
• Usually a must
• Lets you use an unstable system from day one
• At allocated sites, can result in bonus hours if machine

crashes during run
• Consider ramifications of how you do this

− Unformatted or formatted
− 1 file or many files
− 1 checkpoint or checkpoints every m steps

1 checkpoint is never enough
Do at least 2, current and previous

− The answers to these may depend on the filesystems and/or machine

• Do you need files to be portable?
− Big endian/little endian (often a compile-time option for I/O)
− HDF5, NetCDF

Portable Performance-Oriented Programming 34

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

C/Fortran interoperability
• Minimize C/Fortran interoperability

− Porting can be troublesome
• If required (e.g. Fortran program calling C library)

− Localize interactions
− Keep interface in a easily recognizable file to be reviewed when

porting
• Or use modern interoperability features

− Standard C interoperability (Fortran 2003)
− Allows Fortran programs to call C functions and access C global

objects
− And vice versa
− ISO_C_BINDING module provides interoperable kind

parameters for C types and Fortran intrinsic types
− Requires modern compiler (Fortran standard compliant)

Portable Performance-Oriented Programming 35

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Interoperability example
$ more libc_defs.f
 module libc_defs
 use,intrinsic iso_c_binding

 interface
 function kill(pid, sig),bind(c) result(return_val)
 import c_int, c_int32_t
 integer(c_int) :: return_val
 integer(c_int32_t),value :: pid
 integer(c_int), value :: sig
 end function kill

 function getpid(),bind(c) result(pid)
 import c_int32_t
 integer(c_int32_t) :: pid
 end function getpid

Portable Performance-Oriented Programming 36

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Interoperability example
 function system(syscall),bind(c) result(rval)
 import c_int,c_char
 CHARACTER(len=*, KIND=c_char) :: syscall
 integer(c_int) :: rval
 end function system

 function sleep(seconds),bind(c) result(rval)
 import c_int
 integer(c_int) :: rval
 integer(c_int),value :: seconds
 end function sleep
 end interface

 end module libc_defs

Portable Performance-Oriented Programming 37

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Interoperability example
$ more tst.f
 use libc_defs
 use,intrinsic iso_c_binding

 integer(c_int) :: sig,res
 integer(c_int32_t) :: pid

 pid = getpid()
 sig = 9
 res = kill(pid,sig)

 end

Portable Performance-Oriented Programming 38

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

2.3 Programming for the future
• Gate counts keep increasing

− Floating-point units get cheaper
− More fine-grained parallelism

• Clock-speed increases are stalling (Heat!)
• Bandwidth may be catching up

− Wire signal rates continue to increase
− Optical communication will get cheaper

• Programming implications
− Clearly present fine-grained parallelism
− Allow latency hiding (local and remote)

Portable Performance-Oriented Programming 39

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

2.3 Programming for the future
• Operate on adjustable sub-aggregates

(blocks, tiles, etc.)
− Not scalars (to allow vectorization and

pipelining)
− Not the whole domain (to allow caching)

• Avoid false dependencies
− Pointers!
− I/O statements inside loops (for

debugging)

Portable Performance-Oriented Programming 40

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

2.3 Programming for the future
• Use modules instead of passing arguments

(if you always pass the same object)
− Easier promotion of scalar procedures
− Easier promotion of variables to co-arrays (Fortran 2008)
− Compilers can “see” the variables better
− Adding “arguments” is a local modification

(not throughout call stack)
• Use modules instead of user-defined types

− Easy promotion of variables to co-arrays
− Avoid artificial dependencies
− Encourage operations on aggregates
− Simpler for others to understand
− Simpler for compilers to understand

Portable Performance-Oriented Programming 41

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Modules caveat: side effects
• Assume

− sub1 gets x and y passed in as arguments
− sub1 calls sub2
− Sub2 has some arguments (not x and y)
− Sub2 uses x and y imported via modules and

modifies y
• Then

− cannot easily tell when looking at sub1 what might
be changed in sub2 (side effects)

− Not consistent in how vars are passed, confusing
− Modules can hide information from the reader

Portable Performance-Oriented Programming 42

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Side-effects example
• VMEC2000 (fusion)
 SUBROUTINE sweep3_blocks (xc, xcdot, gc, nmax_jog)
 USE vmec_main, ONLY: r01, z01
 REAL(8), DIMENSION(ns,0:ntor,0:mpol1,ntyptot) :: &
 xc, xcdot, gc, xstore

 CALL FUNCT3D(istat)
 xstore = xc
 N2D: DO n_2d = 0, ntor
 M2D: DO m_2d = 0, mpol1
 DO i = 1, nsize
 js = radial_pts(i)
 xc(js,n_2d,m_2d) = xstore(js,n_2d,m_2d) + hj
 xcdot(js,n_2d,m_2d) = hj
 ENDDO
 CALL FUNCT3D(istat) ! xc is input, gc is output
 xc = xstore
 xcdot = 0
 ! gc is used to update other arrays not shown
 ENDDO
 ENDDO

Portable Performance-Oriented Programming 43

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Side-effects example
• Code is legal, but hard to figure out
• The comments aren’t there in the real

code
− Should be!

Necessary for understanding

Portable Performance-Oriented Programming 44

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Agenda
1. Introduction
2. Programming basics
3. General optimizations
4. Advanced optimizations
5. Case studies

Portable Performance-Oriented Programming 45

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

3. General optimizations
• Focus on single-processor performance
• Use following strategies (in order of

increasing effort and difficulty)
− Minor source code modifications
− Best compiler optimization options
− High-performance library and algorithm
− Tuning code for a particular system

• Will not cover compiler options, libraries,
or algorithms here

Portable Performance-Oriented Programming 46

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

3. General optimizations
1. Removing clutter [Dowd]

− Subroutine overhead
− Branches
− Other

2. FP/loop optimizations
− Unrolling, etc.

3. Data locality
− Blocking/clumping

• BLAS 2 and 3 - careful about overhead
− Array re-indexing
− Ambiguity in memory references

4. Directives

Portable Performance-Oriented Programming 47

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

3.1 Removing clutter
• Subroutine overhead

− Very large on vector machines, prevents
vectorization very important

− Also a factor on superscalar machines
• Two techniques

1. Some compilers can do automatic inlining
• Further gains can be had by doing it yourself
• Manual inlining is not necessarily recommended

2. Push loops down into subroutines
• Eliminates subroutine overhead and allows for more

efficient vectorization in the subroutines
• Will look at this more later

Portable Performance-Oriented Programming 48

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

3.1 Removing clutter
do j = 1,n

 if (test(j) .eq. 1) then

 do i =1,n

 a(i,j) = a(i,j) + b(i,j)

 enddo

 else

 call STOP_PROGRAM(); endif

enddo

• Call to STOP_PROGRAM
prevents parallelization

do j = 1,n

 if (test(j) .eq. 1) call
STOP_PROGRAM()

enddo

do j = 1,n

 do i =1,n

 a(i,j) = a(i,j) + b(i,j)

 enddo; enddo

• STOP_PROGRAM almost
never called, separate it

• “a” does not end up the same

Portable Performance-Oriented Programming 49

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

3.1 Removing clutter
• Manual inlining example: S3D

 DO 90 K = 2, KK
#ifdef VECTORVERSION
C Manually inline for X1.
 DO J = 1, K-1
 DJK(J,K) = (((COFD(4,J,K) * ALOGT) +
 $ COFD(3,J,K)) * ALOGT +
 $ COFD(2,J,K)) * ALOGT +

COFD(1,J,K)
 ENDDO
#else
 CALL MCEVAL4 (ALOGT, K-1, COFD(1,1,K), DJK(1,K))
#endif
 90 CONTINUE

• Compiler could inline MCEVAL4
− But doing it manually yielded even more speedup

 Is this a good macro name?

Portable Performance-Oriented Programming 50

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

3.1 Removing clutter
• Both techniques can result in

− More efficient code on most machines
− More-readable or less-readable code

Be careful in their use

Portable Performance-Oriented Programming 51

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

3.1 Rearrange clutter?
do j = 1,n2

 do i = 1, n1

 a(i,j) = a(i+1,j+1) +
LARGE_FUNCTION(b,c,d,..)

enddo; enddo

• Inner loop will vectorize

• Nothing will stream

do j = 1,n2
 do i = 1, n1
 atemp(i,j) =

LARGE_FUNCTION(b,c,d,..)
enddo; enddo
do j = 1,n2
 do i = 1, n1
 a(i,j) = a(i+1,j+1) + atemp(i,j)
enddo; enddo

• Inner loops will vectorize: Most of

the work streams

• Potentially uses more memory

Portable Performance-Oriented Programming 52

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

3.1 Removing clutter
• Branches

− Be clear and concise with conditionals
• Put most likely to fail/pass test first for and/or tests,

respectively
• Don’t be too wordy, don’t be redundant

− Within loops
• Loops with if tests can vectorize, but still best to

move them out if at all possible
• There are ways to deal with some if-tests in loops

− See Dowd or Goedecker
− “you don’t want anything inside a loop that doesn’t have to be

there, especially an if-statement,” [Dowd]

• We’ll talk about “filters” later

Portable Performance-Oriented Programming 53

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

3.1 Removing clutter
• Data type conversions

− Cost several instructions
− Remove superfluous mixing of datatypes

• Sign conversions
− Remove superfluous conversions
− A sign conversion can take several cycles

• Fortran copy overheads
− Passing a slice (substructure) of an array

often copies the data into a work array
(memory bandwidth)

Portable Performance-Oriented Programming 54

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

3.1 Removing clutter
• Floating-point exceptions

− Handled differently by vendors
− Execution may stop, or continue with nonnumeric

values
• Execution can be much slower with NaNs

− Might be result of incorrect programming, or result of
compiler optimizations

• Recommendation is this must be watched out
for
− Either with internal checks in code (compile- or run-

time) or compiler switches
− If it happens, your code can run extremely slow

Portable Performance-Oriented Programming 55

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

3.2 FP/Loop optimization
• Loop unrolling

− Positives
• Exposes parallelism by fattening up the loop

− Potential negatives
• Unrolled by wrong factor (machine dependent)
• Register spilling
• Instruction-cache misses
• Other hardware delays

− Shared memory machines: false sharing
• Less readable (unless using directives)

• Don’t do this manually
− Use directives instead

Portable Performance-Oriented Programming 56

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Loop-unrolling example
 if(na.gt.40*nb) then
!DIR$ PREFERSTREAM
 do ia=1,na
!DIR$ SHORTLOOP
 do ib=1,nb,4
 sum00 = (0.0,0.0)
 sum01 = (0.0,0.0)
 sum02 = (0.0,0.0)
 sum03 = (0.0,0.0)
!DIR$ PREFERVECTOR
 do ic=1,na
 sum00 = sum00 + Xj(ib,ic)*AA(ic,ia)
 sum01 = sum01 + Xj(ib+1,ic)*AA(ic,ia)
 sum02 = sum02 + Xj(ib+2,ic)*AA(ic,ia)
 sum03 = sum03 + Xj(ib+3,ic)*AA(ic,ia)
 enddo
 XjAA(ib,ia) = sum00
 XjAA(ib+1,ia) = sum01
 XjAA(ib+2,ia) = sum02
 XjAA(ib+3,ia) = sum03
 enddo
 enddo

 …
! also have the remainder case
 do ib=nb-mod(nb,4)+1,nb
…
 else
 XjAA(1:nb,1:na) = matmul(Xj(1:nb,1:na),

AA(1:na,1:na))
 endif

Don’t do this!

Portable Performance-Oriented Programming 57

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

3.2 FP/Loop optimization
• Associative transformations

− Numerically not equivalent (potential to alter
answers)

− Vector reduction
• Calculate several iterations at a time

independently, or
• Calculate partial sums then assemble

− Usually done by compiler at high optimization
levels or in optimized math libraries

Portable Performance-Oriented Programming 58

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

3.2 FP/Loop optimization
• Loop interchange

− Rearrange loop nest so the right stuff is at the
center

− Swap high trip counts for low
− Increase parallelism (via unrolling)
− Improve memory-access patterns

• Unit-stride access
• Reuse cache and registers
• See next section

Portable Performance-Oriented Programming 59

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

3.3 Data locality

• Memory access is a major bottleneck on
machines with a memory hierarchy

• Optimizing memory access has a large
potential for performance improvements

Portable Performance-Oriented Programming 60

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

3.3 Data locality
• Potential optimization issues

− Strides
− Loop reordering for optimal locality
− Loop fusion to reduce unnecessary memory

references
− Data structures
− Blocking
− Cache thrashing
− Ambiguity in memory references

Portable Performance-Oriented Programming 61

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Strides
• Unit stride is still the best

− Conserves cache entries
• Can’t eliminate strided memory accesses

− Try restructuring loops to minimize cache and
TLB misses

− Try not to get too ugly

Portable Performance-Oriented Programming 62

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Beware low trip counts
• Assume n1=n2>100, n3<20

do j = 1,n2

 do i = 1,n1

 do k = 1, n3

 atemp(k) = f(i,j,k)+…

 enddo

 do k=1,n3

 c(i,j,k) = c(i,j,k) + atemp(k)+…

 enddo

enddo; enddo

• k loop parallel; i, and j are not

• Short trip count on k makes code
less efficient

• Promote atemp
do j = 1,n2
 !dir$ prefervector
 do i = 1,n1
 do k = 1, n3
 atemp(i,j,k) = f(i,j,k)+…
 enddo
 do k=1,n3
 c(i,j,k) = c(i,j,k) + atemp(i,j,k)+…
 enddo
enddo; enddo
• Now i and j parallel; much more

efficient
• Increased memory usage

Portable Performance-Oriented Programming 63

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Loop reordering
• Two aspects:

− Interchanging loops
• Simple (possibly just a directive)
• But usually not enough

− Swapping array indices
• If declared in a module, could be quite simple

to do (assuming Fortran array syntax)
• In general, tedious and error prone

Portable Performance-Oriented Programming 64

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Loop interchange
• Some compilers can interchange loops

− May need to use directive
ir------< do j = 1,200
ir MVs--< do i = 1,200
ir MVs a(i) = a(i) + b(i,j) * c(j)
ir MVs--> end do
ir------> end do

• X1E compiler can “hoist” a(i) after
interchange

Portable Performance-Oriented Programming 65

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Loop interchange
• Before
 do nn=0,n_max
 do i=1,n_x
 do n1=-n_max+nn,n_max
 ! f dg/dr - g df/dr
 fgr(nn,i) = fgr(nn,i)+&
 fn(n1,i)*gn_r(nn-n1,i)-&
 gn(n1,i)*fn_r(nn-n1,i)
 ! g df/dp - f dg/dp
 afgp(nn,i) = fgp(nn,i)+&
 gn(n1,i)*fn_p(nn-n1,i)-&
 fn(n1,i)*gn_p(nn-n1,i)
 ! df/dp dg/dr - df/dr dg/dp
 fg2(nn,i) = fg2(nn,i)+&
 fn_p(n1,i)*gn_r(nn-n1,i)-&
 fn_r(n1,i)*gn_p(nn-n1,i)
 enddo ! n1
 enddo ! i
 enddo ! nn

• After
 do i=1,n_x
 do nn=0,n_max
 do n1=-n_max+nn,n_max
 ! f dg/dr - g df/dr
 fgr(nn,i) = fgr(nn,i)+&
 fn(n1,i)*gn_r(nn-n1,i)-&
 gn(n1,i)*fn_r(nn-n1,i)
 ! g df/dp - f dg/dp
 afgp(nn,i) = fgp(nn,i)+&
 gn(n1,i)*fn_p(nn-n1,i)-&
 fn(n1,i)*gn_p(nn-n1,i)
 ! df/dp dg/dr - df/dr dg/dp
 fg2(nn,i) = fg2(nn,i)+&
 fn_p(n1,i)*gn_r(nn-n1,i)-&
 fn_r(n1,i)*gn_p(nn-n1,i)
 enddo ! n1
 enddo ! nn
 enddo ! i

n_max=63 and n_x=400
1.2x faster on X1E
2x faster on XT3

Portable Performance-Oriented Programming 66

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Index swap
• Gyro before

 complex, dimension(-n_max:n_max,n_x) :: fn, fn_r, gn, gn_r
 do i_diff=-m_dx,m_dx
 do i=1,n_x
 do nn=0,n_max
 fn_r(nn,i) = fn_r(nn,i)+w_d1(i_diff)*fn(nn,i+i_diff)
 gn_r(nn,i) = gn_r(nn,i)+w_d1(i_diff)*gn(nn,i+i_diff)
 enddo ! nn
 enddo ! i
 enddo ! i_diff
 do i=1,n_x
 do nn=1,n_max
 fn_r(-nn,i) = conjg(fn_r(nn,i))
 gn_r(-nn,i) = conjg(gn_r(nn,i))
 enddo ! nn
 enddo ! i

Portable Performance-Oriented Programming 67

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Index swap
• Gyro after

 complex, dimension(n_x,-n_max:n_max) :: fn, fn_r, gn, gn_r
 do i_diff=-m_dx,m_dx
 do i=1,n_x
 do nn=0,n_max
 fn_r(i,nn) = fn_r(i,nn)+w_d1(i_diff)*fn(i+i_diff,nn)
 gn_r(i,nn) = gn_r(i,nn)+w_d1(i_diff)*gn(i+i_diff,nn)
 enddo ! nn
 enddo ! i
 enddo ! i_diff
 do i=1,n_x
 do nn=1,n_max
 fn_r(i,-nn) = conjg(fn_r(i,nn))
 gn_r(i,-nn) = conjg(gn_r(i,nn))
 enddo ! nn
 enddo ! i

Portable Performance-Oriented Programming 68

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Loop fusion
• Fusing loops together can result in better

reuse of loaded data
• Idea is to issue as few loads of array

elements as possible before storing
results and flushing the cache

• Many compilers do this at highest
optimization levels

Portable Performance-Oriented Programming 69

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Loop fusion, before
 do i=1,n_x
 do nn=0,n_max
 fn_p(nn,i) = -i_c*n_p(nn)*fn(nn,i)
 gn_p(nn,i) = -i_c*n_p(nn)*gn(nn,i)
 enddo
 enddo
 fn_r = (0.0,0.0)
 gn_r = (0.0,0.0)
 do i_diff=-m_dx,m_dx
 do i=1,n_x
 do nn=0,n_max
 fn_r(nn,i) = fn_r(nn,i) + &
 w_d1(i_diff)*fn(nn,i+i_diff)
 gn_r(nn,i) = gn_r(nn,i) + &
 w_d1(i_diff)*gn(nn,i+i_diff)
 enddo ! nn
 enddo ! i
 enddo ! i_diff

 x_fft(:,:) = (0.0,0.0)
 do i=1,n_x
 do nn=0,n_max
 x_fft(nn,i) = fn(nn,i)
 x_fft(nn,n_x+i) = gn(nn,i)
 x_fft(nn,2*n_x+i) = fn_p(nn,i)
 x_fft(nn,3*n_x+i) = gn_p(nn,i)
 x_fft(nn,4*n_x+i) = fn_r(nn,i)
 x_fft(nn,5*n_x+i) = gn_r(nn,i)
 enddo
 enddo

Portable Performance-Oriented Programming 70

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Loop fusion, after
 x_fft(:,:) = (0.0,0.0)
 do nn=0,n_max
 do i=1,n_x
 fn_r = (0.0,0.0)
 gn_r = (0.0,0.0)
 do i_diff=-m_dx,m_dx
 fn_r = fn_r+w_d1(i_diff)*fn(nn,i+i_diff)
 gn_r = gn_r+w_d1(i_diff)*gn(nn,i+i_diff)
 enddo ! i_diff
 fn_p = -i_c*n_p(nn)*fn(nn,i)
 gn_p = -i_c*n_p(nn)*gn(nn,i)
 x_fft(nn,i) = fn(nn,i)
 x_fft(nn,n_x+i) = gn(nn,i)
 x_fft(nn,2*n_x+i) = fn_p
 x_fft(nn,3*n_x+i) = gn_p
 x_fft(nn,4*n_x+i) = fn_r
 x_fft(nn,5*n_x+i) = gn_r
 enddo
 enddo

Reduced memory-
bandwidth requirement

Moral: Might need to
combine techniques

Portable Performance-Oriented Programming 71

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Blocking
• Retrieve as much data as possible with as few

cache misses as possible
• Rearrange loop nests to work on neighborhoods

of data - blocks or submatrices
• Block size (blocking parameter) depends on the

cache size or vector length - machine
dependent

• Design resulting code to be portable
− Make block size an input or compile-time parameter

• WARNING: Don’t write hand-coded versions of
common computational kernels if more efficient
implementations exist.

Portable Performance-Oriented Programming 72

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Matrix-multiplication example*
real*8 a(n,n), b(n,n), c(n,n)

do ii=1,n,nb

 do jj=1,n,nb

 do kk=1,n,nb

 do i=ii,min(n,ii+nb-1)

 do j=jj,min(n,jj+nb-1)

 do k=kk,min(n,kk+nb-1)

 c(i,j)=c(i,j)+a(j,k)*b(k,i)
 end do

 end do

 end do

 end do

 end do

end do
* Required in any performance tutorial.
(Use BLAS3 instead!)

Portable Performance-Oriented Programming 73

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Blocking example: CLM
• Community Land Model
• Pass loops bounds to physics routines
• Introduce new outer loop with large stride

− Use loop index and stride to define array blocks
− Tunable for different systems
− Small blocks for cache-dependent superscalar

systems
− Full-size blocks for vector-only systems
− Large blocks for vector systems with additional

dimensions of parallelization (threads/streams)
− Implicitly controls the vector length

Portable Performance-Oriented Programming 74

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Blocking example: CLM
nclumps = get_proc_clumps()
do nc = 1, nclumps
call get_clump_bounds(nc, …,
begc, endc, …)

…
call Hydrology1(begc, endc, …)

…
end do

Portable Performance-Oriented Programming 75

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Cache thrashing
• Effective size of cache is much smaller than

physical size because of mapping rules and
access pattern
− For example, direct mapping or set associative

• Memory references are mapped to same set of
cache slots while other slots remain unused

• FFTs, multipole methods, wavelet transforms
where leading dimensions are a high power of 2

• Padding arrays usually fixes the problem

Portable Performance-Oriented Programming 76

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Reference ambiguity
• Difficult for compiler to distinguish from

other, possibly conflicting references
• Compiler cannot determine if two index

expressions point to the same location
− Can’t tell can’t optimize
− Prevents parallelism

• Use directives
• See filters, next section

Portable Performance-Oriented Programming 77

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

3.4 Directives
• Easy way to give compiler more

information so it can do its job
• Mostly portable

− Just comments
− Some vendors’ compilers recognize other

vendors’ directives
• Could be a gotcha?

Portable Performance-Oriented Programming 78

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Agenda
1. Introduction
2. Programming basics
3. General optimizations
4. Advanced optimizations
5. Case studies

Portable Performance-Oriented Programming 79

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

4. Advanced optimizations
1. Pushing loops down
2. Data structures
3. Filters
4. False dependencies
5. Vector replication

Portable Performance-Oriented Programming 80

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

4.1 Pushing loops down
• Push loops down into subroutines

− Eliminates subroutine overhead and allows for
more efficient vectorization in the subroutines

− Examples: Gyro, S3D, CLM

Portable Performance-Oriented Programming 81

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

4.1 Pushing loops down
• Gyro before

 complex :: RHS_overshoot, RHS_drift, RHS_star
 [...]
 ! PERIODIC
 do i=1,n_x
 do m=1,n
 m0 = m_phys(ck,m)
 call manage_overshoot(fh0(m,i),RHS_overshoot)
 RHS_drift = o_d1(m0,i,p_nek_loc,is)*fh(m,i)
 RHS_star = o_star(in_1,ie,is,i)*density(is,i)*&
 gyro_u(m,i,p_nek_loc,is)
 RHS(m,i,p_nek_loc,is) = RHS(m,i,p_nek_loc,is)+&
 RHS_overshoot+i_c*(RHS_drift-RHS_star)
 enddo ! m
 enddo ! i

Portable Performance-Oriented Programming 82

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

4.1 Pushing loops down
• Gyro after

 complex, dimension(n,i1:i2) :: RHS_overshoot
 complex :: RHS_drift, RHS_star
 [...]
! PERIODIC
 call manage_overshoot(fh0,RHS_overshoot)
 do i=1,n_x
 do m=1,n
 m0 = m_phys(ck,m)
 RHS_drift = o_d1(m0,i,p_nek_loc,is)*fh(m,i)
 RHS_star = o_star(in_1,ie,is,i)*density(is,i)*&
 gyro_u(m,i,p_nek_loc,is)
 RHS(m,i,p_nek_loc,is) = RHS(m,i,p_nek_loc,is)+&
 RHS_overshoot(m,i)+i_c*(RHS_drift-RHS_star)
 enddo ! m
 enddo ! i

Portable Performance-Oriented Programming 83

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

4.1 Pushing loops down
• Portability comments

− Increased memory usage
• RHS_overshoot from scalar to 2D array

• Performance comments
− Huge win on vectors
− Same speed or faster on superscalars

• Otherwise
− No harder to read/understand code
− No harder to port
− No machine-specific code
− manage_overshoot now works on arrays instead of

scalars

Portable Performance-Oriented Programming 84

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

4.2 Data structures
• Data structures may prevent optimizations

− Arrays of pointers to derived types
− Variables implemented as scalars in each instance of a derived

type
− Science routines called for each grid or subgrid

• Pros?
− Object-oriented design
− Not too bad on cache-based scalar platforms

• Cons
− Leads to large, unpredictable strides
− Not conducive to vector processing or superscalar processing

Portable Performance-Oriented Programming 85

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

CLM data structure

[Hoffman, 2005]

Portable Performance-Oriented Programming 86

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

CLM 2.1
• Arrays of pointers to derived types
• Outer loops over each element
• Many if tests
• Strided memory accesses
• Unvectorizable

Portable Performance-Oriented Programming 87

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

CLM vector prototype
• Prototype only implemented for part of model

− See CUG 2003 paper

• Arrays grouped in modules
− No derived types
− Index arrays implement hierarchy

• Outer loops over “clumps” of elements (shown earlier)
• Scalar blocks become loops over elements of a clump
• Index filters replace many if tests (see next section)
• Vectorizes automatically
• Also faster on superscalar architectures
• Fewer lines of code

Portable Performance-Oriented Programming 88

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

CLM 3.0
• Derived types with array pointers

− Pointing into contiguous arrays
• Outer loops over “clumps” of elements
• Scalar blocks become loops over elements of a

clump
• Index filters replace many if tests
• Vectorizes

− Requires many concurrent directives, thanks to
pointers

• Also faster on superscalar architectures

Portable Performance-Oriented Programming 89

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

4.3 Filters
• if statements reduce parallelism

− Masks vector operations redundant ops
• Implement index filter instead

Portable Performance-Oriented Programming 90

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

4.3 Filters
!dir$ permutation(filterp)

fn =0
do pi = plb, pub
 if (<test>) then
 fn = fn+1
 filterp(fn) = pi
 end if
end do
do fi =1, fn
 pi = filterp(fi)
 oi = pcolumn(pi)
 gi = pgridcell(pi)
 …

Portable Performance-Oriented Programming 91

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

4.3 Filters
• Portability comments:

− It’s personal whether filters are harder to read
than the original loop with if-test code

− Potentially increases memory usage, but not
much

− No machine-specific code
• Performance:

− Much better on vector
− Often better on superscalar

Portable Performance-Oriented Programming 92

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

4.4 False dependency
• Code can inhibit parallelism (serializes

execution) though iterations are
completely independent

• Example: temporary arrays

• Note: here we are not talking about
cache-related false dependency

Portable Performance-Oriented Programming 93

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

4.4 False dependency
common /something/ atemp(n)

do j = 1,m

 do i = 1, n

 atemp(i) = sqrt(b(i,j))

 c(i,j) = c(i,j) + atemp(i)

enddo; enddo

• Outer loop does not parallelize
due to false dependency on
atemp

real stemp

do j = 1,m

 do i = 1, n

 stemp = sqrt(b(i,j))

 c(i,j) = c(i,j) + stemp

enddo; enddo

• Outer loop parallelizes; More
efficient

• May manually fuse loops to
remove temporary arrays

Portable Performance-Oriented Programming 94

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

VMEC2000 example
 CALL FUNCT3D(istat)
 xstore = xc
 N2D: DO n_2d = 0, ntor
 M2D: DO m_2d = 0, mpol1
 DO i = 1, nsize
 js = radial_pts(i)
 xc(js,n_2d,m_2d) = xstore(js,n_2d,m_2d) + hj
 xcdot(js,n_2d,m_2d) = hj
 ENDDO
 CALL FUNCT3D(istat) ! xc is input, gc is output
 xc = xstore
 xcdot = 0
 ! gc is used to update other arrays not shown
 ENDDO
 ENDDO

Portable Performance-Oriented Programming 95

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

VMEC2000 example
• Outer loops are independent
• Can any compiler parallelize this?
• Must be rewritten to parallelize

Portable Performance-Oriented Programming 96

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

4.5 Vector replication
• Replicate an array to vectorize multiple

updates to the same elements
• Similar trick at a smaller scale for

OpenMP by privatizing the array
• Notice #ifdef _UNICOSMP

Portable Performance-Oriented Programming 97

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

GTC vector replication
 15. #ifdef _UNICOSMP
 16. integer, parameter :: vlen = 256
 17. integer :: mv, v
 18. real(wp) vdensityi(mgrid,0:mzeta,vlen)
 19. #endif
 20. real(wp) dnitmp(0:mzeta,mgrid)
 21.
 32. r V M----<><><> densityi=0.0
 81. #ifdef _OPENMP
 91. !$omp parallel private(dnitmp)
 93. dnitmp=0. ! Set array to zero
 94. #elif defined _UNICOSMP
 95. r V M----<><><> vdensityi=0.
 96. #endif

Portable Performance-Oriented Programming 98

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

GTC vector replication
 122. m MVs 3 #ifdef _OPENMP
 123. m MVs 3 ! Use thread-private temp array dnitmp to store the

results
 124. m MVs 3 ij=jtion0(larmor,m)
 125. m MVs 3 dnitmp(kk,ij) = dnitmp(kk,ij) + wz0*wt00
 126. m MVs 3 dnitmp(kk+1,ij)= dnitmp(kk+1,ij) + wz1*wt00
 128. m MVs 3 ij=ij+1
 129. m MVs 3 dnitmp(kk,ij) = dnitmp(kk,ij) + wz0*wt10
 130. m MVs 3 dnitmp(kk+1,ij)= dnitmp(kk+1,ij) + wz1*wt10
 132. m MVs 3 ij=jtion1(larmor,m)
 133. m MVs 3 dnitmp(kk,ij) = dnitmp(kk,ij) + wz0*wt01
 134. m MVs 3 dnitmp(kk+1,ij)= dnitmp(kk+1,ij) + wz1*wt01
 136. m MVs 3 ij=ij+1
 137. m MVs 3 dnitmp(kk,ij) = dnitmp(kk,ij) + wz0*wt11
 138. m MVs 3 dnitmp(kk+1,ij)= dnitmp(kk+1,ij) + wz1*wt11

Portable Performance-Oriented Programming 99

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

GTC vector replication
 139. m MVs 3 #elif defined _UNICOSMP
 140. m MVs 3 ij=jtion0(larmor,m)
 141. m MVs 3 vdensityi(ij,kk,v) = vdensityi(ij,kk,v) + wz0*wt00
 142. m MVs 3 vdensityi(ij,kk+1,v)= vdensityi(ij,kk+1,v) +

wz1*wt00
 144. m MVs 3 ij=ij+1
 145. m MVs 3 vdensityi(ij,kk,v) = vdensityi(ij,kk,v) + wz0*wt10
 146. m MVs 3 vdensityi(ij,kk+1,v)= vdensityi(ij,kk+1,v) +

wz1*wt10
 148. m MVs 3 ij=jtion1(larmor,m)
 149. m MVs 3 vdensityi(ij,kk,v) = vdensityi(ij,kk,v) + wz0*wt01
 150. m MVs 3 vdensityi(ij,kk+1,v)= vdensityi(ij,kk+1,v) +

wz1*wt01
 152. m MVs 3 ij=ij+1
 153. m MVs 3 vdensityi(ij,kk,v) = vdensityi(ij,kk,v) + wz0*wt11
 154. m MVs 3 vdensityi(ij,kk+1,v)= vdensityi(ij,kk+1,v) +

wz1*wt11
 173. m MVs 3 #endif

Portable Performance-Oriented Programming 100

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

GTC vector replication
 181. #ifdef _OPENMP
 182. ! accumulate results from each thread-private
 183. ! array dnitmp()into the shared array densityi
 185. !$omp critical
 186. do ij=1,mgrid
 187. do kk=0,mzeta
 188. densityi(kk,ij)=densityi(kk,ij)+dnitmp(kk,ij)
 189. enddo
 190. enddo
 191. !$omp end critical
 193. #elif defined _UNICOSMP
 194. ir-------< do v=1,vlen
 195. ir 2-----< do kk=0,mzeta
 196. ir 2 !dir$ preferstream
 197. ir 2 MV--< do ij=1,mgrid
 198. ir 2 MV densityi(kk,ij) = densityi(kk,ij) +

vdensityi(ij,kk,v)
 199. ir 2 MV--> enddo
 200. ir 2-----> enddo
 201. ir-------> enddo
 202. #endif

Portable Performance-Oriented Programming 101

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

GTC vector replication
• Portability comments:

− Increases memory usage
− No harder to read/understand than OpenMP section
− Overall code is getting ugly

• OpenMP, UNICOS/mp, and serial
• What could be done better?

− Could macro names be better?
• Performance gain:

− Huge on vector machines
− SMP gains for OpenMP

Portable Performance-Oriented Programming 102

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Agenda
1. Introduction
2. Programming basics
3. General optimizations
4. Advanced optimizations
5. Case studies

Portable Performance-Oriented Programming 103

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

5.0 Case studies
• The following are “case studies” of some

DOE codes
• “Case study” does not necessarily mean a

short highly energized study of a code
− Some will be summaries of the evolution of

codes over a several year timeframe

Portable Performance-Oriented Programming 104

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

CLM 3.0

Portable Performance-Oriented Programming 105

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Gyro
• Gyro is a [fusion] microturbulence code, [Candy]

− Continuum (Eulerian)
− 5-D
− Runs on a variety of machines: IBM Power4, Cray

X1E and XT3, SGI Altix, Opteron clusters
• Summary covers revisions of code from early

2.x versions to 4.
− Some revisions were direct result of optimizations

discussed earlier
− Some portability techniques also evident in Gyro

Portable Performance-Oriented Programming 106

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Positive code features of Gyro
• DEBUG and VERBOSE input flags
• Checkpointing

− Current and previous checkpoints
• Prints out norms of arrays
• No derived types or pointers

− Just arrays
• Uses modules to pass arguments

− Easy promotion/demotion of arrays
• Consistent programming style

− Consistent naming scheme of vars and files
• Comment-based data structures
• Simple but effective make system

− Some support Python scripts
− No preprocessing (multiple sources controlled by make)

Portable Performance-Oriented Programming 107

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Gyro optimizations
• Directives
• Checkpoints were originally formatted, now

unformatted
• Pushed loops down
• Fused loops/reduced temporary memory

usage
− 25% gain in nonlinear-advance FFT routine

• Vectorized across tridiagonal solves
− With reworking data structures and reworking

setup loops, big win on X1E

Portable Performance-Oriented Programming 108

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Gyro optimizations
• Swapped indices

− 10% gain on X1E, slower on Opterons
• Fix for sqrt(1-x) where x~1
• Pseudo-poly-algorithmic

− Different sources for a few (core)
computationally intense routines (nonlinear
advance +/- FFTs)

− Controlled by make system
• New parallel “distribution” algorithm

− Big win on all machines

Portable Performance-Oriented Programming 109

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

S3D
• Combustion code, PI: Jackie Chen
• Direct numerical simulation of 3D

turbulent non-premixed flames
• Runs on variety of machines including

IBM SP, Cray X1E, Cray XT3, Opteron
cluster, SGI Altix

Portable Performance-Oriented Programming 110

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Positive code features of S3D
• Checkpoints at regular intervals

− Useful for postprocessing/movies
− Eats up disk space

• Consistent programming style
• Uses modules to pass arguments

− Easy promotion/demotion of arrays
• Simple and effective make system
• Sparingly uses (descriptive) #ifdef macros

− Some for machine specific opts: VECTORVERSION
− Some for alternate method: SAVEFILESINSEPDIR

Portable Performance-Oriented Programming 111

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

S3D optimizations
• After already ported and somewhat optimized

by user
• Push 2 loops of triple nest down

− ~2x speedup (for that version) on X1E
• Add directives
• Removal of MPI Derived Types

− ~2x speedup (for that version) on X1E, significant
gain on other machines

− Co-Array Fortran initially a workaround
• Overall ~3x speedup on X1E

Portable Performance-Oriented Programming 112

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

GTC
• Fusion microturbulence code
• Particle-in-cell (PIC)

• Optimizations/modifications
− Saw vector replication earlier
− Used filter to fix “less efficient” compiler

vectorization (following)

Portable Performance-Oriented Programming 113

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

GTC: Fixing “less efficient”
• A Cray X1[E]-ism

− Can easily be missed, shows up in messages
at the bottom of “.lst” file

 A vectorized loop contains potential conflicts
due to indirect addressing at line 266, causing
less efficient code to be generated.

• Moral: always check compiler messages

Portable Performance-Oriented Programming 114

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

GTC: fixing less efficient
• Before:

 264. MV-------------< do m=1,mi

 265. MV ip=max(1,min(mflux,1+int((wpi(1,m)-a0)*d_inv)))

 266. MV dtem(ip)=dtem(ip)+wpi(2,m)*zion(5,m)

 267. MV dden(ip)=dden(ip)+1.0

 268. MV-------------> enddo

...

ftn-6371 ftn: VECTOR File = pushi.F90, Line = 264

 A vectorized loop contains potential conflicts due to indirect addressing at

 line 266, causing less efficient code to be generated.

ftn-6371 ftn: VECTOR File = pushi.F90, Line = 264

 A vectorized loop contains potential conflicts due to indirect addressing at

 line 267, causing less efficient code to be generated.

ftn-6204 ftn: VECTOR File = pushi.F90, Line = 264

 A loop starting at line 264 was vectorized.

ftn-6601 ftn: STREAM File = pushi.F90, Line = 264

 A loop starting at line 264 was multi-streamed.

Portable Performance-Oriented Programming 115

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

GTC: fixing less efficient
• After:

 265. Vw V M----<><><> vdtem=0

 266. f-------------<> vdden=0

 267. m--------------< do mv=1,mi,vlen

 268. m MVs----------< do m=mv,min(mv+vlen-1,mi)

 269. m MVs v=m-mv+1

 270. m MVs ip=max(1,min(mflux,1+int((wpi(1,m)-a0)*d_inv)))

 271. m MVs vdtem(v,ip)=vdtem(v,ip)+wpi(2,m)*zion(5,m)

 272. m MVs vdden(v,ip)=vdden(v,ip)+1.0

 273. m MVs----------> enddo

 274. m--------------> enddo

 275. M--------------< do i=1,mflux

 276. M Vw V 4--<><><> dtem(i)=sum(vdtem(:,i))

 277. M f-----------<> dden(i)=sum(vdden(:,i))

 278. M--------------> enddo

Portable Performance-Oriented Programming 116

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

CAM
• Community Atmospheric Model (CAM)
• Developed at NCAR
• Used for weather and climate research
• Atmospheric component of CCSM

− Must run efficiently on a variety of computers
− Must port easily

• Results must be invariant wrt number of
processors used
− Must disallow some [compiler] optimizations

Portable Performance-Oriented Programming 117

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

CAM
• Compile-time or run-time parameters to optimize

performance for a given platform, problem or processor
count
− pcols is maximum number of columns assigned to a chunk
− Large pcols gives long inner loops, good for vectorization
− Small pcols effective for caching and pipelining, uses less memory

• Code fragments enabled for certain systems, controlled
by cpp tokens
− For example, implementations for vector and nonvector systems

• cpp tokens for math library routines with different calling
sequences on different systems (primarily FFTs)

• Many load-time and run-time options for parallel load-
balancing of physics

Portable Performance-Oriented Programming 118

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Don’ts: nameless DOE code
• Important DOE code doing production work

− Many issues with this code (in our opinion)
− Shall remain nameless

• Problems include
− Poor choice of macro names
− Poor placement of #ifdefs
− Extensive mixing of C and Fortran
− Improper use of PETSc
− Programming style not consistent

• Probably result of many authors over many years
− Lots of dead code
− No internal timers, checks
− Lack of comments
− No runtime verbosity

Portable Performance-Oriented Programming 119

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Nameless examples (just a few)
1. Used implicit none, but then did the wrong

thing
 subroutine xyz
 implicit none
 integer ierr,MPI_COMM_WORLD

2. CPP instead of Fortran include
 subroutine abc3d(arg, myrank)
#include "mpif.h"

3. Short, cryptic variable names
 DATATYPE2 zz,oz,tz,sz,
& con,don,e,a1,a2,a3,
& a4,a5,a6,b1,b2,b3,b4,b5,b6,
& c1,c2,bill,bob

Portable Performance-Oriented Programming 120

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Nameless examples
4. Computed gotos, spaghetti code

 if(iop(1)-5) 201,200,201
 201 c1=w(1)
 if(iop(2)-5) 203,202,203
 203 c2=w(k4)
 goto 205
 200 if (n-4)300,302,302
 302 a1=x(1)-x(2)
C …. Work
 goto 201
 202 if (n-4)300,303,303
 303 b1=x(n)-x(n-3)
C …. More work
 goto 203

Portable Performance-Oriented Programming 121

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Nameless examples
5. Potential MPI deadlock

SUB1
all procs call MPI_SEND

SUB2
all procs call corresponding MPI_RECV

MAIN
call SUB1
call SUB2

6. Saved variable lmax typo?
 integer lmax
 save lmax

if(ncy.eq.0) lmax=lfu
write(*,*) lmax,u(lmax)

Portable Performance-Oriented Programming 122

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

Acknowledgments
• Nathan Wichmann, Cray
• Jeff Candy, General Atomics

Portable Performance-Oriented Programming 123

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

References/Resources
• Alpern and Carter, “Performance Programming,”

www.research.ibm.com/perfprog
• Candy, http://web.gat.com/comp/parallel/physics_results.html
• Constantine, “Back to the Future,” Comm. ACM, pg. 126-129, v. 44,

March 2001.
• Dijkstra, “Notes on Structured Programming,” Technological

University Eindhoven, T.H. Report 70-WSK-03, April 1970.
• Dowd, “High Performance Computing,” O’Reilly
• Goedecker and Hoisie, “Performance Optimization of Numerically

Intensive Codes,” SIAM
• Hatton, “Does OO sync with how we think?” IEEE Software, pg. 46-

54, May/Jun 1998.
• Hoare, “The Emperor’s Old Clothes,” Comm. ACM, pg. 75-83, v.

24, 1981.

Portable Performance-Oriented Programming 124

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

The National Center for
Computational Sciences

References
• Kupferschmid, “Classical FORTRAN,” Marcel Dekker,

2002.
• Ledgard, “The Emperor with No Clothes” Comm. ACM,

pg 126-128, v. 44, Oct. 2001.
• “High performance computing: problem solving with

parallel and vector architectures,” Ed. by Sabot
• Stroustrup, “The C++ Programming Language”, special

Ed., Addison Wesley, 2004
• Willard, “Technology Update: High-Perfomance

Fortran,” Workstation and High-Performance Systems
Bulletin, IDC #12526, Vol. 2, Tab:6, Nov. 1996.

